If we did all things we are capable of, we would literally astound ourselves.

– Thomas A. Edison

Showing posts with label force constant. Show all posts
Showing posts with label force constant. Show all posts

Tuesday, October 06, 2009

Kerala Engineering Entrance 2009 Multiple Choice Questions on Work and Energy

In the KEAM (Engineering ) 2009 question paper three questions were included from the section ‘work, energy and power’. Here are those questions with solution:

(1) A particle is acted upon by a force F which varies with position x as shown in figure. If the particle at x = 0 has kinetic energy of 25 J, then the kinetic energy of the particle at x = 16 m is

(a) 45 J

(b) 30 J

(c) 70 J

(d) 135 J

(e) 20 J

The work done by a variable force acting along the direction of displacement can be found by drawing a force-displacement graph. The area under this graph gives the work done. Since the force has positive and negative values, the area also has positive (+50 units) and negative (– 30 units) values. The net area is +20 units and hence the gain in kinnetic energy during the movement from position x = 0 to the position x = 16 m is 20 J.

The particle has kinetic energy of 25 J at position x = 0. Therefore the kinetic energy at position x = 16 m is 25 + 20 = 45 J.

(2) Two springs P and Q of force constants kP and kQ [kQ = kP/2] are stretched by applying force of equal magnitude. If the energy stored in in Q is E, then the energy stored in P is

(a) E

(b) 2 E

(c) E/8

(d) E/4

(e) E/2

The potential energy (U) of a spring stretched (by a force F) through distance x is given by

U = ½ kx2 where k is the spring constant (force constant) given by k = F/x

This can be rewritten as

U = ½ (F2/k) since x = F/k

The nergy stored in P and Q are respectively given by UP = ½ (F2/kP) and UQ = ½ (F2/kQ).

Therefore, UP/UQ = kQ/kP = ½ as given in the question.

This gives UP = UQ/2 = E/2.

(3) A rod of mass m and length l is made to stand at an angle of 60º with the vertical. Potential energy of this rod in this position is

(a) mgl

(b) mgl/2

(c) mgl/3

(d) mgl/4

(e) mgl/√2

When the rod is kept inclined at an angle of 60º with the vertical, its centre of gravity is raised (from the ground level) by a height h = (l/2)cos 60º = l/4.

The gravitational potential energy of the rod in this position is mgh = mgl/4.

You will find many useful multiple choice questions on work, energy and power at physicsplus and at AP Physics Resources